
Using a simple MMORPG to teach
multi-user, client-server database development

Greg Wadley
Department of Information Systems

The University of Melbourne
Australia 3010

+613 8344 1586

greg.wadley@unimelb.edu.au

Jason Sobell
Philology Pty Ltd
111 Barry Street

Carlton, Australia 3053
+613 9349 4735

jason@philology.com.au

ABSTRACT

Applications built for undergraduate programming assignments
are typically single-user systems, of which the programmer is also
the sole user. Real-world information systems differ from this
scenario in a number of ways. In particular, they are usually
client-server systems within which many users concurrently
access the same data. In order to illustrate for our students the
benefits and pitfalls of multi-user systems based around a shared
database, we asked them to build a simple massively-multiplayer
online role-playing game (MMORPG) which stored game-world
and player state in a relational database. We provided students
with a graphical client written in Visual Basic. As players moved
about the game world, interacting with objects and other players,
their client programs called procedures in the central database to
update game state accordingly. The students’ task was to
implement database tables and procedures that allowed the clients
to work. The system’s client-server architecture resembled that of
commercial information systems and often occasioned concurrent
access to data. In this paper we describe the system, the students’
experience of building it, and our perception of its pedagogical
pros and cons.

Categories and Subject Descriptors

K.3.2 [Computing Milieu] Computer and Information Science
Education – Information systems education.

General Terms

Design, Human Factors, Languages, Theory

Keywords

database, multi-user, education, project, MMORPG, RDBMS

1. INTRODUCTION
Computer games are used as undergraduate programming

assignments for a number of reasons. Many students play games,
understand this class of application well, consider games fun to
develop and use, and are interested to find out how they work.
Games emphasize the user interface of an application, and are

well suited to real-time visualization of system state. They can
readily illustrate a number of problems from simple program logic
to graphics, usability and artificial intelligence. Game
development expertise can lead to a career that many students
regard highly.

Different genres of games are suited to different courses and
competencies. For example, students in introductory programming
courses are often asked to build simple puzzle games, while
advanced students in game development courses might build 3d
games or graphics engines.

The authors teach an advanced database course in a Bachelor
of Information Systems degree. Our aim is to expose final-year
students, who have completed an introductory course in SQL and
E-R modeling, to issues concerning the development, physical
implementation and administration of database systems. Lab
exercises in our course involve hands-on use of both Oracle and
Sql Server database management systems and related tools.

Information systems in industry typically use a client-server
architecture, by which many users connect to a central database.
Yet projects in database courses are typically single-user systems,
of which the student is both the programmer and the only user.
While this architecture is easy to program, teach and administer, it
obscures the main purpose to which most relational databases are
put, which is to store a representation of entities and events that
are significant to a group of people, who read and write the data in
an ad-hoc way and effectively communicate through it. An
understanding of this function of multi-user databases cannot
easily be gained by building single-user applications in which the
database is simply a convenient disk-based data store.

Figure 1. Typical I.S. architectures used in Industry (above)

and Education (below)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
2nd Annual Microsoft Academic Days Conference on Game

Development, February 22–25, 2007, Florida, USA.
Copyright 2007 ACM 1-58113-000-0/00/0004…$5.00.

Database

Client

Client

Client

Clients

Database

Database

Database

Nor do single-user systems readily illustrate the problems,
such as lost updates, uncommitted dependencies, and inconsistent
reads, that can arise when several users concurrently access the
same data. Without experience of these problems it is difficult for
students to understand the techniques that database and DBMS
designers use to solve them, such as transactions and locks, or the
problems that these techniques in turn can cause, such as
deadlock.

We reasoned that in order to better understand client-server
database programming, our students should build a multi-user
system in which an update to the database by any user affected
everyone else’s view of the data in an obvious way. Taking into
consideration also the benefits of using games in programming
assignments, we concluded that building a multi-user game which
stored the state of the game-world and players in a relational
database would be an informative and motivating project.

Our students were not expert GUI programmers and our
course does not focus on writing client programs, especially the
kind of graphics-intensive clients used in commercial multi-player
computer games. Also, because of the limited power of our server,
lab computers and network, a fast-paced game was inappropriate.
These restrictions excluded some genres of games from
consideration, such as team-based ‘shoot-em-ups’.

Inspired by the popularity of massively multiplayer role
playing games such as World of Warcraft, we decided to use a
simple MMORPG as the project theme. To preserve the course’s
focus on database rather than GUI programming, we wrote a
client program using Visual Basic and gave it to students. We
provided also a list of the tables and stored procedures that the
client would look for in the supporting database. The students’
task was to implement these tables and procedures.

The essence of an MMORPG is that all players act within the
same, single virtual world. Each player’s actions affect, and are
visible to, the other players. Furthermore, the game-world is
persistent: world and player state are maintained independently of
any particular individual’s login sessions. These criteria require
properly managed, central, disk-based storage.

We hypothesized that this function of an MMORPG – to
maintain a single, persistent representation of a (in this case,
virtual) world, which is read and written to by many users – is
essentially the same function we wanted to illustrate for RDBMS-
based information systems generally.

2. HOW THE GAME WORKED
To simplify the task of programming the client, and to make

the game rules and mechanics clear, we designed a simple game
that took place in a two-dimensional 10 x 10 ‘grid world’ shaped
like a chess board. Players navigated around this grid by moving
up, down, left or right, one square (‘room’) at a time, using
buttons on the game client. To illustrate an avatar’s location, the
client simply highlighted the appropriate square. As well as the
players’ avatars there were items scattered about the world which
players could pick up, hold in their inventory as they moved
about, and drop again in a different location. These were
displayed to the player in listboxes.

Figure 2. the Game Client (GUI)

Each individual player and item was represented by a row in
a table in a central relational database. As the game progressed,
the database kept track of players’ locations, health and scores,
and the locations of items. Location had low resolution, and could
be stored as an integer. Items had to be located either in one of the
rooms or in a player’s inventory. To pick up an item, a player’s
avatar needed to be located in the same room as the item. The
player then pressed a ‘pick up’ button on his/her game client.

Some items (‘weapons’) could be used to attack other
players. Attacks could only occur when two players occupied the
same room. Players accumulated points by picking up items, and
lost health when attacked. Health could be restored by finding a
health pack. These game actions were effected by the player by
pressing a button in the client, triggering execution of a stored
procedure which read and wrote data in the database.

Each room in the game-world was represented by a row in a
database table. A room was marked 'out of bounds’ by omitting
that row from the table (we represented non-traversable rooms
graphically in the client as a river and a tree). Movement by a
player required that the client perform a Select against the
database to check whether the desired destination room was
traversable, and if it was, to read which items and players were in
the room: these were then listed in the client. Finally movement
required an Update to change the player's recorded position.

Players could send text messages to each other. The
messages were displayed in a list box in the game client. The
sending player’s client inserted a row in the Chat table, and the
receiving player’s client eventually selected it for display.

Players had to identify themselves to the game (ie log in) by
supplying a name and password already recorded in the Player
table. Thereafter a player’s game client was able to supply the
player’s identifier to the database when sending or retrieving data.
Following the ‘persistent world’ approach used in MMORPGs, a
player’s location and state was preserved between any logout and
the next login. Logged-out players did not appear in game clients
and could not be attacked. Logins, logouts and other game events
were recorded by inserting rows into an event-logging table.

Figure 3. the Database Schema

The database schema is illustrated in figure 3. Several of the
kinds of tables typically implemented in relational databases are
present in this schema, including:

• entities (people, objects, places) - the Player, Item,
and Room tables

• associative entities (relationships between other
entities) – the RoomContents and Inventory tables

• logged events - the EventLog and Chat tables

• lookup tables – the ItemType table

The individual tables were:

Player: contained one row for each individual person who
was registered to play the game (ie students and teachers taking
the course). Like a typical ‘person’ table, it recorded identifying
information (a player’s name and password), some dynamic
properties (location, health, points), and whether the player was
currently logged in.

Room: contained one row for each of the game world’s
rooms (except for non-traversable ones), identified by the integers
1 to 100 and by x-y coordinates. Players and items in the game
world were situated in exactly one room at any given time. We
programmed the client in such a way that it would be relatively
straightforward to re-implement the game with more or fewer
rooms.

Item: contained one row for each individual object in the
game world. Items were classified into four categories - Points,
Health-packs, Weapons and Fixed - using the lookup table
ItemType. While health items were consumed when picked up,
players could carry weapons and points items in an Inventory,
implemented as a table pairing items with players. We arbitrarily
restricted the size of an inventory to three items, to reduce
hoarding by players. Players could not interact with Fixed items.
At any given time an Item had to belong either to a player’s
inventory or to a room. This method of representing items made it
relatively straightforward for game administrators to insert new
items into the game.

The Inventory and RoomContents tables associated Items
with Players and Rooms respectively.

EventLog: recorded actions by players for (fictitious)
auditing purposes. For simplicity we described events with a
string of text rather than categorizing them with a lookup table.

Chat: contained one row for each text message sent by a
player to another player. When the receiving player’s game client
fetched a message for display, it marked the message as ‘seen’
rather than deleting it from the table.

When a player carried out a game action, their game client
made one or more calls to the database. The students’ task was to
enable these calls using stored procedures, according to the
specifications listed in table 1. For each procedure we gave
students the procedure name, a description of its behaviour, the
inputs that a client would provide, and the outputs a client would
expect. The client was programmed to call the appropriate
procedure in the database when the user pressed a button. The
‘getter’ procedures were also called every few seconds by a timer
in the client, to check whether the room’s contents had changed,
check incoming messages, and allow the screen to be refreshed.

Table 1. Stored procedures that supported game actions

Procedure Inputs Outputs

spLogin: See if there is a
row in Player that matches
this name and password. If
there is, change that row’s
LoggedIn field to 1, write a
row to the Event table, and
return the row from Player.

Otherwise, return nothing.

PlayerName,
Password

1 row from
Player table

spMovePlayerTo: Select
from Room to check that
desired room exists (is
traversable). If it is, update
player’s location.

PlayerId,
X, Y

‘Success’
= 1 or 0

spGetPlayer: Join Player
and Room tables to select
all information about this
player and current room

PlayerId Player and
room details

spGetItems: Join Item and
RoomContents tables to get
information about each item
in this room.

RoomId list from
Item table

spGetPlayers: Return info
about all players in this
room, except this player

PlayerId,
RoomId

list from
Player table

spGetInventory: Join Item
and Inventory tables to get
information about each item
in this player’s inventory

PlayerId list from
Item table

spPickUpItem: Delete item
from RoomContents and
add it to Inventory. Update
player’s point score.

PlayerId,
ItemId

(none)

spDropItem: Delete one
row from Inventory, add
one row to RoomContents.

PlayerId,
ItemId

(none)

spAttack: Check that
selected item is a weapon
and how much damage it
inflicts. Reduce victim’s
health accordingly.

PlayerId,
VictimId,
ItemId

Message
about how
much
damage was
inflicted

spGetAllPlayers: Return a
list of all players in the
Player table, to populate
chat dropdown.

(none) list of
PlayerId,
PlayerName

spAddChat: Write one row
to Chat table

Text,
PlayerId1,
PlayerId2

(none)

spGetChat: Select all chat
messages addressed to this
player and not yet seen.
Mark them as seen.

PlayerId list of
PlayerName,
ChatText

spAddEvent: Write one row
to Event table

PlayerId,
EventDetail

(none)

spLogout: Change this
player’s LoggedIn field to
False.

PlayerId (none)

3. THE STUDENT EXPERIENCE
We provided each student with a Sql Server database in

which to implement his/her tables and procedures. We encouraged
students to check the behaviour of their databases by using both
the game client and Sql Server Query Analyzer to execute
procedures. The latter made it easy to display several different
SQL statements and their outputs on the same screen, such as
‘select *’ before and after a procedure execution, which was
useful when debugging procedure code.

While each student implemented their own project database,
they could, when desired, allow another student’s client to log
into their database, in order to play their game with the other
student.

We also provided a working 'black box' solution to the
assignment. This was a database with tables and procedures
already implemented by us. It allowed students to play and
observe a working version of the game, to better understand their
project requirements. We used server permissions to ensure that
students’ game clients could execute the procedures in this
database without being able to read the procedure code or table
structures. During a number of lab classes we asked all students to
log into the provided database and play a game together. During
these sessions we displayed the contents of some tables on a
screen in the lab, using the Enterprise Manager and Query

Analyzer tools. Students were able to simultaneously observe their
own screen, the screens of other students nearby, and the
changing table data on the projection screen, in order to
understand how game clients were interacting with and within the
shared database.

To submit their work, each student placed their ‘create table’
scripts and stored procedure code into a text file, and emailed it to
the teachers. Code was assessed according to correctness of client
behaviour, with bonus marks for elegance and efficiency.

4. WAS THE PROJECT SUCCESSFUL?
In using a multiplayer videogame as a database project our

aim was not to teach game design, but to utilize a type of
application which we believed undergraduate students would find
interesting and intuitive, and which would successfully illustrate
the benefits and pitfalls of developing systems based on multi-
user access to shared data. Therefore in analyzing whether our
project was successful, we need to ask whether students acquired
a better understanding of how systems are built around relational
databases. That is our ‘general’ question. We can also analyze our
detailed decisions. For example, was the project too easy or hard?
Was the database schema too simple or too complex? Was it
reasonable to give students a pre-programmed client and ask them
to develop the server?

We did not conduct a formal experiment to measure the
educational impact of the project. However we can give brief
answers based on informal feedback received from students
during the project, the University’s ‘Quality of Teaching’
feedback received after the project was over, the work submitted
by students, and our subsequent reflections on the course. Overall,
we felt that the project was successful in engaging and educating
students. However there were some problems, and these are listed
below.

4.1 Pros
Our game emphasized user interaction via shared data. The

game was multi-user in a way that was easily understandable by
students. It emphasized ‘computation-as-interaction’ over
‘computation-as-calculation’; the client-server, networked,
interaction-based view that Stein [1] suggests is the best metaphor
for understanding modern information technology use.

The project utilized an architecture which is common in
business contexts: a client written in Visual Basic, running on a
Windows PC, accessing a Sql Server database.

The game client helped students to monitor the changing
values stored in the underlying database, realizing some of the
pedagogical advantages of visualization [2]. The visual client
encouraged students to frequently compare their client screen with
the underlying database tables and see more clearly the effect of
their procedures on the database.

The system afforded communication among users. Other than
tools such as email and instant messaging, it is difficult to think of
an application class that lends itself as readily as multiplayer
games to having several users communicate through a shared
database. The collaborative and visual nature of the system helped
to motivate students.

The project emphasized that the core function of an
information system is to represent some interesting subset of the
world; in particular some entities, their properties and
relationships, categorized into classes, which are relevant to a
business problem [3]. Although a game-world is fictitious, using a
relational database to represent the properties and behaviour of a
game world emphasized the representational function of
databases.

Some common database project applications (such as order
entry) tend not to excite students. The MMORPG was an unusual
project for a database course and was more interesting for many

students. They were happy to explore the system in class and even
after hours. While the system was presumably not as engaging as
a commercial MMORPG, its relative simplicity made the
underlying mechanisms clear to students curious about how
MMORPGs might work.

Although this project did not use a business-oriented theme,
many of the design issues exposed here are relevant also to
business systems. The most important tables in a business
database typically represent classes of entities and events. Event
tables tend to become large over time. Miscellaneous tables are
needed to implement sub-classes and many-to-many relationships.
These phenomena were present in our game database.

In common with many real-world applications, our game had
to adequately handle user identity (established through a login) to
allow the system to work in a meaningful way, and to allow
communication between users.

A number of game actions lent themselves to demonstrating
problems of concurrent access to data. For example, to pick up an
item required a Delete from the RoomContents table, an Insert to
the Inventory table, and an Update of points in the Player table.
Getting this code to work correctly when two players
simultaneously tried to pick up the same item required careful
ordering of these statements, and the use of transactions. Game
scenarios such as these may demonstrate problems of concurrency
in a more visual and dramatic way than do commonly-used
teaching examples such as “transfer funds”.

4.2 Cons
While many students are interested in games, some are not.

Our assignment was not a typical business application. While this
was a plus for some students, many of them were business-
focused, and some felt a game to be relevant only to recreation.

There were some problems fine-tuning our approach of
giving students a finished client and asking them to implement a
database to support it. In typical system development the server
would be developed before, or at least in conjunction with, the
client. It took some redrafting before we specified the inputs and
outputs of the client clearly enough for students to write their
procedure code. Without access to client code, it was more
difficult for students to debug database code (they could not, for
example, display client variables), and students were not exposed
to methods of data validation in the client. It is probably better for
students to program both client and database in an application:
however this was not feasible in our project.

4.3 Relevance to game development courses
The aim of our project was to illustrate the design and

development of client-server databases rather than games. Our
game-world and game-play were not to commercial standards. We
did not intend that the game closely resemble a commercially
viable MMORPG. However some comments can be made on the
relevance of this project to game development.

It is possible that for performance reasons some commercial
MMORPGs do not use a relational database to store game-world
and player state. However our research indicated that several do,
and at least one open-source MMORPG does so [4]. Our two-
tiered architecture was much simpler than the complex multi-tier,
multi-server, distributed architectures needed to operate a large-
scale MMORPG. However we feel that we captured the essence
of multiplayer game design in this project. A course oriented to
game design or development might make use of a system like this
as a starting point to discuss multiplayer game design.

5. CONCLUSION
We found that development of a relational database to support a
simple MMORPG worked well as a project in an advanced
database course. Multiplayer games are well-suited to illustrating
issues of identity, interaction, and concurrent access to data in
multi-user information systems. In this paper we have described
the game mechanics, the database tables and stored procedures
that our students produced, and our experience as teachers using
this project in an undergraduate course.

The game is easy to simplify or expand, allowing it to be
easily tailored to different pedagogical goals, course levels and
class sizes. For example, students could be assigned a simple
version of the game in an introductory database course, and a
more complex version in an advanced course. Students in a game
design course could be given this game and asked to improve its
game play, game world, or interaction design. A web interface for
game administration could be added. The authors would be
pleased to discuss the application with educators interested in
using it in their courses.

6. ACKNOWLEDGMENTS
The authors would like to thank the students who undertook the
project, and to Graeme Simsion and Darren Skidmore at the
University of Melbourne for reviewing a draft of this paper.

7. REFERENCES
[1] Stein, L. Challenging the computational metaphor:

implications for how we think, in Cybernetics and Systems
30:473-507, 1999

[2] Hundhausen, C. Integrating algorithm visualization

technology into an undergraduate algorithms course:

ethnographic studies of a social constructivist approach, in
Computers and Education, 39:237-260, 2002

[3] Weber, R. Ontological Foundations of Information Systems,
Coopers and Lybrand, 1997

[4] Riddoch, A. and J. Turner. Technologies For Building Open-

Source Massively Multiplayer Games, Worldforge.org, 2005

