
1

How do I get started
making video games?
John Horton

Everybody has at least one game in them. I believe this is the 21st

century equivalent of “everybody has a book in them”. Games are

powerful; they can tell a story, entertain, persuade and bring joy or

sadness. To their creator, video games offer satisfaction, educational

advancement and even personal wealth.

What more powerful reasons do we need to get that game out from

within us and onto the Google Play, Apple App store, Steam, XBOXLive

Arcade or where ever we think our video game should be?

The problem
The problem of course is that you want to make video games but you just don’t know where, how or the best

way to start.

This brief article was written for you if any of the following 3 questions are going round in your mind and you

have so far not managed to find an answer:

1. Which is the best language (C++, C#, Java, Python, Objective C, HTML5, etc.) to learn?

2. Which is the best platform (PC, Android, iOS, Mac, SteamOS etc.)?

3. Which Engine (UnrealEngine, Unity, GameMaker, Cocos, LibGDX, AndEngine, CryEngine, etc.)?

The first thing to point out is that there is no “best” platform, engine or language and anyone who tells you

there is, is either biased, blinkered or just plain wrong.

2

The solution
The answer to all these questions can be much more easily found by talking about you and your game. It is

desperately important to have this discussion with yourself because if you head off down the wrong path you

could blow a serious amount of time before you realise you should have done things differently.

If you ever get that sinking feeling knowing you have just burnt an unrecoverable hour of your life on

Facebook or Candy Crush, trust me, that is nothing compared to learning a programming language which

appeared to offer so much but turns out it can never deliver what you want. Furthermore, using a scatter-gun

approach and trying to learn a bit of everything will make progress very slow and possibly cause confusion.

Talking about you and your game
To make sure you get it right first time, write down on a piece of paper or in a text editor, your answers to all

the following questions. Wherever possible, elaborate a little so at the end of this short exercise you will have

a few paragraphs that detail everything about you and your game. Make sure to do this before we move on

to the part of the tutorial that will allow you to match your goals to languages, platforms and engines.

Q1: Where are you starting from?
Are you already a programming guru in one or more languages or are you a complete beginner

with absolutely no programming experience at all? Perhaps you are somewhere in the middle.

Write it down and then move on to the next question.

Q2: Where do you want to end up and when?
What do you see as a successful conclusion to your efforts at learning to make games? Do you

want to be the lead programmer at Rockstar or Infinity Ward? Perhaps you have seen Indie Game

the Movie and have a passionate drive to become an indie dev’. Maybe you just want to have fun?

Perhaps you are just looking for the absolute easiest path to getting published or simply finishing

your game for yourself? How much time are you prepared to put in to this? A weekend, a year, as

long as it takes?

Q3: How do you like to learn?
Do you want to learn the absolute ‘proper’ way without any shortcuts or useful tricks? You want

a fully comprehensive a-z learning pathway with zero shortcuts- no matter how much fun

the shortcuts might be. Do you want the polar opposite of this and want to get to the games

straightway or maybe your way is somewhere in between the two.

Q4: Do you have a preferred target platform?
You might not have an answer to this one; you might have several platforms in mind. It is even

possible you absolutely must develop your game for every platform. Whatever the case, write it

down before moving on.

3

Q5: Do you know what type of game you want to make?
There are so many different types of game and which one you want to make will certainly steer

you towards different learning pathways, engines and languages. Write a sentence or two about

the game you want to make. Be sure to mention the genre, perhaps, 3d, 2d, FPS, RPG, survival, retro

arcade, multiplayer sandbox or mobile match-three. Obviously the preceding list is not exhaustive

and might not have mentioned the type of game that you want to make.

Q6: The important question
Which of the above aspects about you and your game is the most important to you? Some choices

are occasionally hard to reconcile together. Often some kind of compromise of goals is necessary.

For example, how important is it that you make your game for your favourite platform/genre

compared to how fast you want to see results, etc.

You and your game conclusion
Hopefully the above questions will have left you with a statement about you and your game, perhaps

something like the following:

“I did a little bit of programming at school but it is probably best

to start again at the beginning. I have a strong desire to be a

successful indie dev’ and I am prepared to do whatever it takes

to achieve this but I must be able to learn alongside my existing

job which pays the bills. I want to learn everything thoroughly but

I also want to be building games as fast as possible. I wouldn’t

mind making games for any or even all platforms but most of

all I would like to make my game for desktop PC’s and, one-day,

get my new game green-lit on Steam. That would be a real buzz! I

want to make a 2d game with retro graphics but it must feel new

and exciting to play. I don’t have all the details yet but I have loads

of ideas. Maybe a platform stealth, rogue-like set in a dystopian

world run by an evil dictator and the player has to make his way

through the world taking on progressively tougher enemies and

bosses before the final show-down with the dictator himself.

The most important thing is to get it on Steam, anything else is a

bonus.”

4

Matching your goals to reality
By now you should have a personal statement which clearly details your game building goals. Take a look

over the following table. Use the priorities from your statement to target the appropriate column and then

study the row (which represents the attributes of a specific game building solution) to see if it also matches

your other priorities or requirements. This will also start to make clear the language that would be most

appropriate.

There will always be a match! But, there will always be compromises to be made. Study the table and then

we can talk more.

5

Tool Suits genres/
perfect use
case

Main
language(s)
used

Platforms
deployed to

Difficulty assessment Pro Con

UE4 3d*

Want to build a

AAA game and

don’t care how

long it takes.

C++,

Blueprint visual

scripting

All

Inc Consoles**

Very easy to begin building 3d

worlds but piecing together

full games eventually becomes

complex.

Simpler, visual scripting

alternative to programming.

Want to work for AAA consider

starting here.

Totally free and fully featured to

learn and develop.

Arguably the best and fastest 3d

engine.

Amazing for designing 3d worlds.

Loads of up-to-date beginner

tutorials

5% Gross royalty payable on

turnover for released titles.

CryEngine 3d* C++,

Lua

Desktop and

Consoles**

Very easy to begin building 3d

worlds but piecing together

full games eventually becomes

complex.

Want to work for AAA consider

starting here.

Arguably the best looking

graphics of any game engine.

Amazing for designing 3d worlds.

No royalties!

Small monthly fee around $10

Less complete beginner tutorials

compared to Unity and UE4.

6

Tool Suits genres/
perfect use
case

Main
language(s)
used

Platforms
deployed to

Difficulty assessment Pro Con

Unity 3d* C#,

Javascript

All Build your first, working 3d game

in around an hour.

2d games are way more

complicated than on 2d focussed

solutions.

Massive, beginner-friendly

community.

Asset store beats all the

competitors.

Although free there are lots of ways

Unity can make you “need” to pay

for an upgrade.

Despite a recent upgrade, generally

considered a less professional

solution compared to UE4 and

CryEngine

Some of the easier to find beginner

tutorials need updating

Android

Studio

2d,

3d

Java,

C++

Android 3d games are probably not for

beginners

Even 2d games are slightly

tougher than using solutions like

LibGDX.

Very easy publish to a vast

market that is virtually free to

enter ($25 lifetime).

Perfect to show your betas

to friends and family without

jumping through hoops.

Expect to have to market hard to

give your game a start.

7

Tool Suits genres/
perfect use
case

Main
language(s)
used

Platforms
deployed to

Difficulty assessment Pro Con

XCode 2d,

3d

Objective C,

Swift

iOS &

Mac

3d games are probably not for

beginners.

Build games for all Apple devices

using really quick to grasp Swift

or the more challenging (but

flexible) Objective C.

Perhaps the nicest development

environment.

Swift option is arguably the best

beginner game programming

language.

Significant chance of having

submissions declined (especially

amateur games).

Awkward to show unpublished

games to friends and family

$99- $299 + tax annual fee to

submit games.

Must have a Mac to develop.

Cocos2d x 2d C++, JavaScript,

Lua

Mobile and

Windows

Going to need to learn C++ first. Totally free.

Loads of successful games to

point to.

Mobile focussed. Better off with

SDL or SFML for desktop.

Game Maker 2d GameMaker

script

All Very easy to get started with a

range of video tutorials available.

3d is nearly impossible. Don’t get

this for 3d.

Although the language is

proprietary it is very similar to

other language basics like C, C++

and Java and a great way to get

comfortable coding.

Free for windows games.

2d games will be noticeably less

smooth and playable compared to

other 2d focussed solutions

Expect to pay between $150 and

$800 to get some fairly necessary

‘advanced’ features or to be able to

support mobile and Mac.

8

Tool Suits genres/
perfect use
case

Main
language(s)
used

Platforms
deployed to

Difficulty assessment Pro Con

SFML 2d,

simple 3d

C++ Windows,

Mac,

Linux

C++ is arguably one of the harder

languages to learn and get

started but SFML can actually

ease this.

Need to learn C++ first.

Very fast.

Modern OOP language.

Possibly the fastest, smoothest

2d games for desktop can be

made using SFML.

Smaller user base to SDL, less

online tutorials available.

3d work is not for the beginner.

Community can be slightly

unforgiving to complete beginners.

SDL 2d,

simple 3d

C Windows,

Mac,

Linux,

Mobile

Need a beginner C programming

book first.

Very fast.

Perfect for porting old code

written in C to mobile.

Uses out-of-date language.

Mobile implementation is not a

good place to start for beginners.

LibGDX 2d,

3d

Java All Need to learn Java first,

preferably in an Android context.

Totally free.

Very beginner friendly support

community.

3d is much less capable/flexible

than Unity, Ue4, CryEngine.

Arguably slower performance on

iOS.

Very significantly slower

performance on desktop compared

to SDL or SFML.

3d has very little documentation.

9

Tool Suits genres/
perfect use
case

Main
language(s)
used

Platforms
deployed to

Difficulty assessment Pro Con

RPGMaker MV 2d Ruby All Getting started is possible for any

determined beginner.

Perfect for retro RPG’s especially

with turn based fighting.

Free trial available.

Loads of character and scenery

packs available for a fee.

Won’t do anything else without lots

of effort.

Even this latest version makes the

games look a bit clunky on large

HD screens.

Full version $70 (watch out for

Steam sales).

* Perfectly capable of 2d but with significant disadvantages to using a 2d

focussed solution(avoidable complexity, increased program size.)

** Separate developer licence required from each console manufacturer.

Hopefully building a clear view of exactly what it is you want to achieve will make

the table of options super-useful in identifying the best path for you.

10

Start by copying/cloning simple games
You know which game you want to build and you know which solution and language you are going to use.

Exactly what should you do next? Immediately designing and implementing your target game could be very

challenging if you are a beginner so a suggested progression path could be as follows.

2d Games and features progression
Start with the most simple implementation of each game and progressively add features like scoring, high

scores, inventory, achievements, animated characters, parallax backgrounds, particle effects, multiplayer.

As you progress, consider the features your game will need and try to implement them in the simplest

possible manner. When you get bored of the first game (perhaps Pong), provided you have achieved

your goals, move onto the next (perhaps Arkanoid). Each of these features and games is a new learning

experience and trying to do them all immediately could end in frustration, unless you are really dogged. And

even if you are, dogged isn’t fun.

Pong - Implement a game that has the simplest possible moving objects- a bat and a ball. Make

the ball bounce off the bat, the ball and the walls. Lose a life when the ball hits the bottom of the

screen, gain a point when the ball hits the top.

Breakout/Arkanoid - In this game you still have a bat and a ball but this time you also need a

bunch of bricks that must disappear when they are touched by the ball and the ball must bounce

off of a brick. This is a great game for adding lots of features and making it your own. Consider

multiple balls, multi-color bricks, different strength bricks, increasing ball speed, decreasing bat

size, extra life pick-ups etc.

Space Invaders - This is probably the most basic game you can implement where there is some

element of AI (artificial intelligence.) Deciding when the invaders will shoot, move left and right or

down is a challenge but one you will be easily ready for by this point.

Platformer with fixed view - A platformer introduces new elements like a more versatile player

character, perhaps one with walking and jumping animations, maybe the player can have a

weapon as well. Add some simple physics so that the player can fall when he is not on a platform

and some awkward jumps that must be timed just right.

Shooter/platformer with scrolling world and intelligent enemies - Now it’s time to use

everything you have learnt so far and add something new as well. Scrolling is the first step to

building rich, exciting game worlds worthy of the player’s time to explore. Learning how to centre

the scene based on the players location in a world that is bigger than the screen at this stage is

achievable and extremely rewarding for the aspiring developer.

11

By this stage you will be able to consider almost any 2d game and begin to work out for yourself how to go

about implementing it.

3d Games and features progression
As with the 2d games start with the simplest possible implementation and make sure you finish the game.

Be sure to add things like score, lives and victory/defeat conditions.

Maze escape - Use your chosen 3d environment to build a straightforward set of walls that can act

as a maze then add a controllable character who can walk around and try and find his way out.

Perhaps add a time limit where the player will fail if the time expires. Carefully test how difficult or

easy it is to succeed and then ask a friend or family member to try out your first game.

Walking simulator - Now it’s time to get more creative with your environment builder. Try sculpting

a modestly sized landscape with hilly areas, plains and areas with buildings. Try adding trees, street

lights (that work), buildings that you can go inside and structures you can jump on and ascend.

Perhaps make exploration the goal of your game. Scatter pick-ups around the world and provide a

HUD showing how many the player has found and how many more are needed.

Fps with one enemy type - Time to add some enemies. Make a single enemy and make him

home-in and fire at you. Once you have one dangerous enemy learn how your chosen game engine

can help you clone him into dozens of enemies with very little extra work. Have a score, perhaps a

kill-count and a victory condition as well.

Multiplayer fps - By the time you have learnt to do all these things you might be surprised how

straight forward adding multiplayer support is. Engines like UnrealEngine and CryEngine provide

seriously good support for adding what might at first seem desperately complicated.

By this stage you will be able to plan most game types for yourself.

Time to make that game
Once you have built a few games with a few different features, stop! At this point, which could be between

a month or a year later, you will realize that not only do you know how to make a game with all the features

you want but you also have a good idea of how to structure your project. You will likely have the confidence

to start on your masterpiece. You will probably even feel confident enough to outsource the parts of your

game you don’t want/aren’t able to complete yourself, perhaps, graphics, sound, marketing or even parts of

the programming.

It is now that you might get this funny feeling in your stomach. A feeling of anticipation, excitement and

urgency. You will absolutely know- without any doubt that not only have you got a game inside of you but

you can get it out too.

12

Author Bio
John Horton is a coding and gaming enthusiast based in the UK. He has a passion for writing apps, games,

books and blog articles about coding, especially for beginners.

He is the founder of Game Code School, which is dedicated to helping complete beginners get started game

coding using the language and platform which is best for them.

John sincerely believes that anyone can learn to code and that everybody has a game or an app inside of

them; but they just need to do enough work to bring it out.

He has authored around a dozen technology books most recently the following:

Android Programming for Beginners:
https://www.packtpub.com/application-development/android-programming-beginners

Android Game programming by Example
https://www.packtpub.com/game-development/android-game-programming-example

Learning Java Building Android Games
https://www.packtpub.com/game-development/learning-java-building-android-games

http://gamecodeschool.com/
https://www.packtpub.com/application-development/android-programming-beginners
https://www.packtpub.com/game-development/android-game-programming-example
https://www.packtpub.com/game-development/learning-java-building-android-games
https://www.packtpub.com/application-development/android-programming-beginners
https://www.packtpub.com/game-development/android-game-programming-example
https://www.packtpub.com/game-development/learning-java-building-android-games

