
Random Dungeon Design 
 

1 
 

FROM: http://web.archive.org/web/20080203123815/www.aarg.net/~minam/dungeon_design.html 

 

Random Dungeon Design 

The Secret Workings 
of 

Jamis Buck's Dungeon Generator 

 

So you've tried my Dungeon 
Generator once or twice, and it's 
got you thinking. Perhaps you're 
a programmer and would like to 
incorporate similar features in a 
program of your own. Or maybe 
you're not a programmer, but 
would be interested in an 
overview of how this program 
works. 

Either way, I've been asked how 
this random dungeon generator 
works many, many times, and I 
finally decided that, to save 
myself time, I'd just put up the 
description on a web page. 

If you find this explanation 
useful, please let me know. 
Likewise, if you feel that I was 
too technical, or not techinical 
enough, or too ambiguous, let 
me know that, too, and I can try 
and improve it. 

Please send all comments, 
questions, suggestions, and 
flames to: 

jgb3@email.byu.edu 

 
I. A Dungeon is a Maze 

First of all, it is helpful to think of any dungeon as simply a maze—a 
collection of corridors that turn every which way. The first part of 
generating any dungeon, then, is to create a random maze. 

Now, there are lots of different ways to generate mazes (for some idea of 

how many different types of mazes and algorithms there are, check out 
the Maze Algorithms page at Think Labyrinth). For the dungeon generator, 

http://web.archive.org/web/20080203123815/www.aarg.net/~minam/dungeon_design.html
http://web.archive.org/web/20080203123815/http:/www.aarg.net/~minam/dungeon.cgi
http://web.archive.org/web/20080203123815/http:/www.aarg.net/~minam/dungeon.cgi
mailto:jgb3@email.byu.edu
http://web.archive.org/web/20080203123815/http:/www.astrolog.org/labyrnth/algrithm.htm
http://web.archive.org/web/20080203123815/http:/www.astrolog.org/labyrnth.htm


Random Dungeon Design 
 

2 
 

I just picked a straightforward algorithm that I'm pretty familiar with—it's a 
variation on the "Hunt-and-Kill" algorithm. The algorithm creates 
a 2D, normal, orthoganol,perfect maze, which simply means that the maze 

is rectangular, with all passages intersecting at right angles, and that there 
are no loops or inaccessible areas in the maze. 

Here's how the algorithm I picked works. Feel free to substitute this one 
with any other algorithm. 

1. Start with a rectangular grid, x units wide and y units tall. Mark each cell in 
the grid unvisited. 

2. Pick a random cell in the grid and mark it visited. This is the current cell. 
3. From the current cell, pick a random direction (north, south, east, or west). 

If (1) there is no cell adjacent to the current cell in that direction, or (2) if 
the adjacent cell in that direction has been visited, then that direction 
is invalid, and you must pick a different random direction. If all directions 
are invalid, pick a different random visited cell in the grid and start this step 
over again. 

4. Let's call the cell in the chosen direction C. Create a corridor between the 
current cell and C, and then make C the current cell. Mark C visited. 

5. Repeat steps 3 and 4 until all cells in the grid have been visited. 

Once that process finishes, you'll have your maze! There are a few 
variations you can do to make the maze more interesting; for example, my 
dungeon generator has a parameter called "randomness". This is a 
percentage value (0–100) that determines how often the direction of a 
corridor changes. If the value of randomness is 0, the corridors go straight 
until they run into a wall or another corridor—you wind up with a maze with 
lots of long, straight halls. If the randomness is 100, you get the algorithm 
given above—corridors that twist and turn unpredictably from cell to cell. 

II. Mazes vs. Dungeons 

It is important to note that the algorithm given above results in no loops in 
the maze. It is also important to note that the algorithm results in 
a dense maze—that is, every cell contains a corridor. 

This "pure" maze is probably not what you had in mind when you asked for 
a dungeon. For example, sometimes a dungeon passage intersects with 
another passage, or with itself, forming a loop. Also, an underground 
dungeon may cover a lot of territory, but not fill every square meter of 
rock—it is probably sparse, as opposed to dense. 

There are two steps I used to convert the maze into something more like a 
dungeon (though still lacking rooms). 

The first step involves a parameter I called sparseness. It is an integer 
value; you may want to experiment with it to arrive at a value (or set of 
values) that work best for you. It is used as follows: 

1. Look at every cell in the maze grid. If the given cell contains a corridor that 
exits the cell in only one direction (in otherwords, if the cell is the end of a 
dead-end hallway), "erase" that cell by removing the corridor. 

2. Repeat step #1 sparseness times (ie, if sparseness is 5, repeat step #1 
five times). 



Random Dungeon Design 
 

3 
 

After sparsifying the maze, you should wind up with large "blank" gaps, 
where no passages go. The maze, however, is still perfect, meaning that it 
has no loops, and that no corridor is inaccessible from any other corridor. 

The next step is to remove dead-ends by adding loops to the maze. The 
"deadends removed" parameter of my generator is a percentage value that 
represents the chance a given dead-end in the maze has of being 
removed. It is used as follows: 

1. Look at every cell in the maze grid. If the given cell is a dead-end cell 
(meaning that a corridor enters but does not exit the cell), it is a candidate 
for "dead-end removal." 

2. Roll d% (ie, pick a number between 1 and 100, inclusive). If the result is 
less than or equal to the "deadends removed" parameter, this deadend 
should be removed. Otherwise, proceed to the next candidate cell. 

3. Remove the dead-end by performing step #3 of the maze generation 
algorithm, above, except that a cell is not considered invalid if it has been 
visited. Stop when you intersect an existing corridor. 

So, now you have something looking more like a dungeon. All it lacks, 
now, are rooms… 

III. Room Generation and Placement 

This was perhaps the trickiest step. Looking at my generator, you'll see 
three parameters: "room count" (Rn), "room width", (Rw), and "room height" 
(Rh). 

Generating rooms is actually easy: Rw is just a random number between 
the minimum and maximum widths. Rh is generated similarly. 

Placing the rooms was trickier. The idea is to find a place in the maze 
where the given room overlaps a minimum of corridors and other rooms, 
but where the room touches a corridor in at least on place. To this end, I 
implemented a weighting system. 

The program tries to put the room at every possible place in the dungeon. 
The algorithm works as follows: 

1. Set the "best" score to infinity (or some arbitrarily huge number). 
2. Generate a room such that Wmin <= Rw <= Wmax and Hmin <= Rh <= Hmax. 
3. For each cell C in the dungeon, do the following: 

a. Put the upper-left corner of the room at C. Set the "current" score 
to 0. 

b. For each cell of the room that is adjacent to a corridor, add 1 to 
the current score. 

c. For each cell of the room that overlaps a corridor, add 3 to the 
current score. 

d. For each cell of the room that overlaps a room, add 100 to the 
current score. 

e. If the current score is less than the best score, set the best score 
to the current score and note C as the best position seen yet. 

4. Place the room at the best position (where the best score was found). 
5. For every place where the room is adjacent to a corridor or a room, add a 

door. (If you don't want doors everywhere, add another parameter that 
determines when a door should be placed, and when an empty doorway 
[ie, archway, etc.] should be placed). 

6. Repeat steps 2 through 6 until all rooms have been placed. 



Random Dungeon Design 
 

4 
 

IV. Populating the Dungeon 

I won't go into any great detail here, since I took the algorithms for this part 
straight from the Dungeon Master's Guide. The idea is simply to 
put something in each room of the dungeon: hidden treasure, a monster, 

some description, etc. At this stage, you also determine whether any given 
door is secret or concealed, and also what the door's properties are 
(wooden, locked, trapped, etc, etc.). Random tables work quite well to 
determine all of this. 

V. Finis 

And that, as they say, is the proverbial that. All that remains is to display 
the dungeon, and that has nothing to do with dungeon generation 
algorithms. :) 

Feel free to download the source code for my dungeon generator—that's 
where you'll find the real technical explanation. The sources are a 
bastardized mix of C and C++, but fairly readable for all of that. The 
"jbmaze.cpp" file contains the maze generation algorithms, and the 
"jbdungeon.cpp" file contains the dungeon generation stuff. The 
"jbdungeondata.cpp" file populates the dungeon. 

The sources can be obtained here: 

 Core Code and Web Interface: this file contains the "core" dungeon 
generator code, as well as the CGI (online) version of the generator. You'll 
also need the GD and qDecoder libraries (see below) if you plan to actually 
compile this. 

 Windows Interface: this file (.tar.gz, which may cause some grief for 
windows users) contains the code for the Windows version of the 
generator. However, it does not contain the core code—if you wish to 
compile the windows version, you mustdownload the "Core Code and Web 
Interface" file, above. 

 qDecoder: qDecoder is a CGI library. If you wish to compile the web (CGI) 
version of the generator, you'll need this library.(The Windows version 
does not need this library.) 

 GD: The GD library is a bunch of graphics routines that are used for 
creating images. Both the CGI and the Windows versions of the generator 
use this library to display and/or save the dungeon maps. 

Enjoy! 

 
 

http://web.archive.org/web/20080203123815/http:/www.aarg.net/~minam/downloads/dungeon_src.zip
http://web.archive.org/web/20080203123815/http:/www.aarg.net/~minam/downloads/dungeon_win_src.tar.gz
http://web.archive.org/web/20080203123815/http:/www.qdecoder.org/
http://web.archive.org/web/20080203123815/http:/www.boutell.com/gd/

