
Project Management Analysis Appendix
Game Project Management {#Game Project Management}
Everyone has an opinion on “how to create game-design documentation” and “how to manage game development”. Formal Project Management
suggests the “Systems development life cycle” for software game design[4̂] --writing “big designs up front” (BDUF) whose goal is to answer all
questions about the game development process in a tome. The main problem with this formal process is the misconception of “perfect knowledge”.
For small development studios such as ours, this formal process is expensive in time, man-hours, risk and money. In reality, one can never truly
know everything about a game initially. In early stages of the game development process, one has the greatest range of “uncertainty”.

One gains more knowledge as development proceeds through the business rules and logic. The mistake of large development teams using formal
project management is realized only too late in the postmortem follow-ups. The postmortem reveals:
1. Creating knowledge has a high cost in man-hours,
2. Knowledge is the greatest asset produced aside from the final game product itself. Is it a marvel that many small indie developers are moving to
the new business model?

Flash is acclaimed as a rapid application development (RAD) environment. In general, the RAD approach to software development puts less
emphasis on planning tasks and more emphasis on the development process. The RAD approach emphasizes the necessity of adjusting
requirements in reaction to current knowledge gained as the project progresses. This relies on the use of throw-away prototypes in addition to or
even sometimes in place of design documentation. If RAD is adopted, and under closer scrutiny, indie flash game developers simply use “Cowboy
Coding” -- immediately producing source code. At some point, they would begin testing (often near the end of the production cycle), and the
unavoidable bugs would then be fixed before distribution to “asset stores”. In essence, it is programming without a design; it could be labeled
“design on-the-fly” or “wouldn’t that be cool, if ….” Too often “scope creeps” and excellent game ideas die in mid-development. Yet, indie
developers have created revenues from simply a “game concept”.

Game Project Management (GPM) is becoming easier for smaller game indie to larger development teams. It seems the new trend is to integrate
GPM into the game design editors.[5̂] At SGGS, we use a GPM method known as “Software Prototyping” with “Extreme Programming”. On paper –
also called “throw-away prototyping, we identify the game’s basic features and requirements in:

1. client and server technology,
2. business logic (i.e. Revenue generation),
3. environment themes, and
4. gaming mechanics.

We follow 4 core “umbrella” steps in our GPM:

1) Concept,
2) Design,
3) Production, and
4) Distribution.

In the first two steps (we call “Development”), we are asking pre-production questions such as “what, how and is it fun”. Some seasoned experts in
the industry would say we are following a “Waterfall method” or possibly “SCRUM” project management – if labels are important to you. We are
cutting the fat off SCRUM and using a “leaner more agile” model for our small studio development. Since our team consists of one, two, or
sometimes as many as three people, we already have tight integration within multiple disciplines.
Capturing the ideas and research are the major activities in development. We generate knowledge before we enter the Production Phase. In this
“development phase”, we start with game logical data structures and build our data models ERDs. Next, we draft --on paper-- the game user
interfaces (See User Interface Appendix), menus and navigation interactions. Afterwards, we move to create a “click dummy” of the game shell in
the Flash CS IDE. It worth mentioning at this stage, we are moving from paper into physical design – labeling it “pre-production”.

Now the fun starts, source coding! Iteration is paramount; development testing is usually done concurrently with, or at least in the same iteration
as, programming. As we write procedures, frames, and functions, we write “just barely good enough” documentation so that we will understand
what we’re doing and the rationale why. Understand that we create games based on inspiration and that we may not return to a game idea for
weeks, months or –in some cases—years. We have adopted a philosophy that game ideas alone won’t help us and won’t get us to the market. So,
we create a working “game shell” component with fully operational navigation among scenes for ActionScript version 2 and/or 3. We spiral through
each section of code until it works. We are using Flash as a “GUI Builder”[6̂]. Creating this initial code, we often notice repetitive patterns or
simpler ways to achieve the same end results by generalizing, pushing or pull content code; at this point, we are re-factoring.

Since 2010, we are considering the option to move our ActionScript source code off the main-timeline into external source files. This is a significant
project with low priority. Your software source code product may appear either on the main-time or as external files depending on where that game
is in its development stage.

Prototyping

Framework Type: Iterative

Basic Principles

1. Not a standalone, complete development methodology, but rather an
approach to handling selected portions of a larger, more traditional
development methodology (i.e., Incremental, Spiral, or Rapid
Application Development (RAD)).

2. Attempts to reduce inherent project risk by breaking a project into
smaller segments and providing more providing more ease-of-change
during the development process.

3. User is involved throughout the process, which increases the
likelihood of user acceptance of the final implementation.

4. Small-scale mock-ups of the system are developed following an
iterative modification process until the prototype evolves to meet
the users’ requirements.

5. While most prototypes are developed with the expectation that they
will be discarded, it is possible in some cases to evolve from
prototypes toward a working system.

6. A basic understanding of the fundamental business problem is
necessary to avoid solving the wrong problem.

Strengths:

1. “Addresses the inability of many users to specify their information
needs, and the difficulty of systems analysts to understand the
user’s environment, by providing the user with a tentative system
for experimental purposes at the earliest possible time.” (Janson
and Smith, 1985)

2. “Can be used to realistically model important aspects of a system

during each phase of the traditional life cycle.” (Huffaker, 1986)

3. Improves both user participation in system development and
communication among project stakeholders.

4. Especially useful for resolving unclear objectives; developing and
validating user requirements; experimenting with or comparing
various design solutions; or investigating both performance and the
human-computer interface.

5. A potential exists for exploiting knowledge gained during earlier
iteration as later iterations are developed.

6. Helps to easily identify confusing or difficult functions and
missing functionality.

7. May generate specifications for a production application.

8. Encourages innovation and flexible designs.

9. Provides quick implementation of an incomplete, but
functional, application.

Weaknesses:

1. Approval process and control is not strict.

2. Incomplete or inadequate problem analysis may occur whereby only the
most obvious and superficial needs will be addressed, resulting in
current inefficient practices being easily built into the
new system.

3. Requirements may frequently change significantly.

4. Identification of non-functional elements is difficult to document.

5. Designers may prototype too quickly, without sufficient up-front
user; needs analysis, resulting in an inflexible design with narrow
focus that limits future system potential.

6. Designers may neglect documentation, resulting in insufficient
justification for the final product and inadequate records for
the future.

7. Can lead to poorly designed systems. Unskilled designers may
substitute prototyping for sound design, which can lead to a “quick
and dirty system” without global consideration of the integration of
all other components. While initial software development is often
built to be a “throwaway”, attempting to retroactively produce a
solid system design can sometimes be problematic.

8. Can lead to false expectations, where the customer mistakenly
believes that the system is “finished” when in fact it is not; the
system looks good and has adequate user interfaces, but is not
truly functional.

9. Iterations add to project budgets and schedules, thus the added
costs must be weighed against the potential benefits. Very small
projects may not be able to justify the added time and money, while
only the high-risk portions of very large, complex projects may gain
benefit from prototyping.

10. The prototype may not have sufficient checks and balances incorporated.

Situations where most appropriate:

1. Project is for development of an online system requiring extensive
user dialog, or for a less well-defined expert and decision
support system.

2. Project is large with many users, interrelationships, and functions,
where project risk relating to requirements definition needs to
be reduced.

3. Project objectives are unclear.

4. Pressure exists for immediate implementation of something.

5. Functional requirements may change frequently and significantly.

6. The user is not fully knowledgeable.

7. Team members are experienced (particularly if the prototype is not
a throw-away).

8. Team composition is stable.

9. The Project Manager is experienced.

10. No need exists to absolutely minimize resource consumption.

11. No strict requirement exists for approvals at designated milestones.

12. Analysts/users appreciate the business problems involved, before
they begin the project.

13. Innovative, flexible designs that will accommodate future changes
are not critical.

Situations where least appropriate:

1. Mainframe-based or transaction-oriented batch systems.

2. Web-enabled e-business system

3. Project team composition is unstable.

4. Future scalability of design is critic

5. Project objectives are very clear; project risk regarding
requirements definition is low.

Incremental
Framework Type: Combination Linear and Iterative

Basic Principles:

Various methods are acceptable for combining linear and iterative
system development methodologies, with the primary objective of each
being to reduce inherent project risk by breaking a project into
smaller segments and providing more ease-of-change during the
development process:

1. A series of mini-waterfalls are performed, where all phases of the
Waterfall development model are completed for a small part of the
system, before proceeding to the next increment; OR

2. Overall requirements are defined before proceeding to evolutionary,

mini-Waterfall development of individual increments of the system,
OR

3. The initial software concept, requirements analysis, and design of
architecture and system core are defined using the Waterfall
approach, followed by iterative Prototyping, which culminates in
installation of the final prototype (i.e., working system).

Strengths:

1. Potential exists for exploiting knowledge gained in an early
increment as later increments are developed.

2. Moderate control is maintained over the life of the project through
the use of written documentation and the formal review and
approval/signoff by the user and information technology management
at designated major milestones.

3. Stakeholders can be given concrete evidence of project status
throughout the life cycle.

4. Helps to mitigate integration and architectural risks earlier

5. Allows delivery of a series of implementations that are gradually
more complete and can go into production more quickly as
incremental releases.

6. Gradual implementation provides the ability to monitor the effect of
incremental changes, isolate issues and make adjustments before
the organization is negatively impacted.

Weaknesses:

1. When utilizing a series of mini-Waterfall for a small part of the
system before moving on to the next increment, there is usually a
lack of overall consideration of the business problem and technical
requirements for the overall system.

2. Since some modules will be completed much earlier than others,
well-defined interfaces are required.

3. Difficult problems tend to be pushed to the future to demonstrate
early success to management.

Situations where most appropriate:

1. Large projects where requirements are not well understood or are
changing due to external changes, changing expectations, budget
changes or rapidly changing technology.

2. Web Information Systems (WIS) and event-driven systems.

3. Leading-edge applications.

Situations where least appropriate:

1. Very small projects of very short duration.

2. Integration and architectural risks are very low.

3. Highly interactive applications where the data for the project
already exists (completely or in part), and the project largely
comprises analysis or reporting of the data.

Spiral

Framework Type: Combination Linear and Iterative

Basic Principles:

1. Focus is on risk assessment and on minimizing project risk by
breaking a project into smaller segments and providing more
ease-of-change during the development process, as well as providing
the opportunity to evaluate risks and weigh consideration of the project continues throughout the life cycle.

2. “Each cycle involves a progression through the same sequence of

steps, for each portion of the product and for each of its levels of
elaboration, from an overall concept-of-operation document down to
the coding of each individual program.” (Boehm, 1986)

3. Each trip around the spiral traverses four basic quadrants: (1)
determine objectives, alternatives, and constraints of the
iteration; (2) evaluate alternatives; identify and resolve
risks; (3) develop and verify deliverables from the iteration;
and (4) plan the next iteration. (Boehm, 1986 and 1988)

4. Begin each cycle with an identification of stakeholders and their
win conditions, and end each cycle with review and commitment.
(Boehm, 2000)

Strengths:

1. Enhances risk avoidance.

2. Useful in helping to select the best methodology to follow for
development of a given software iteration, based on project risk.

3. Can incorporate Waterfall, Prototyping, and Incremental
methodologies as special cases in the framework, and provide
guidance as to which combination of these models best fits a given
software iteration, based on the type of project risk. For
example, a project with low risk of not meeting user requirements,
but high risk of missing budget or schedule targets would
essentially follow a linear Waterfall approach for a given
software iteration. Conversely, if the risk factors were reversed,
the Spiral methodology could yield an iterative
Prototyping approach.

Weaknesses:

1. Challenging to determine the exact composition of development
methodologies to use for each iteration around the Spiral.

2. Highly customized to each project, and therefore is quite complex,
limiting reusability.

3. A skilled and experienced project manager is required to determine
how to apply it to any given project.

4. There are no established controls for moving from one cycle to
another cycle. Without controls, each cycle may generate more work
for the next cycle.

5. There are no firm deadlines. Cycles continue with no clear
termination condition, so there is an inherent risk of not meeting
budget or schedule.

6. Possibility exists that project ends up implemented following a
Waterfall framework

Situations where most appropriate:

1. Real-time or safety-critical systems.
2. Risk avoidance is a high priority.
3. Minimizing resource consumption is not an absolute priority.
4. The Project Manager is highly skilled and experienced.
5. A requirement exists for strong approval and documentation control.
6. The Project might benefit from a mix of other development methodologies.
7. A high degree of accuracy is essential.

8. Implementation has priority over functionality, which can be added
in later versions.

Situations where least appropriate:

1. Risk avoidance is a low priority.
2. A high degree of accuracy is not essential.
3. Functionality has priority over implementation.
4. Minimizing resource consumption is an absolute priority.

RAD (Rapid Application Development)
Framework Type: Iterative

Basic Principles:

1. The key objective is for fast development and delivery of a high quality the system at a relatively low investment cost.

2. Attempts to reduce inherent project risk by breaking a project into
smaller segments and providing more ease-of-change during the
development process.

3. Aims to produce high-quality systems quickly, primarily through the
use of iterative Prototyping (at any stage of development), active
user involvement, and computerized development tools. These tools
may include Graphical User Interface (GUI) builders, Computer Aided
Software Engineering (CASE) tools, Database Management System
(DBMS), fourth-generation programming languages, code generators,
and object-oriented techniques.

4. Key emphasis is on fulfilling the business need, while technological
or engineering excellence is of lesser importance.

5. Project control involves prioritizing development and defining
delivery deadlines or “time boxes”. If the project starts to slip,
emphasis is on reducing requirements to fit the time box, not in
increasing the deadline.

6. Generally includes Joint Application Development (JAD), where users
are intensely involved in system design, either through consensus
building in structured workshops, or through electronically
facilitated interaction.

7. Active user involvement is imperative.

8. Iteratively produces production software, as opposed to a
throwaway prototype.

9. Produces documentation necessary to facilitate future development
and maintenance.

10. Standard systems analysis and design techniques can be fitted into
this framework.

Strengths:

1. The operational version of an application is available much earlier
than with Waterfall, Incremental, or Spiral frameworks.

2. Because RAD produces systems more quickly and to a business focus,
this approach tends to produce systems at a lower cost.

3. Engenders a greater level of commitment from stakeholders, both

business and technical, than Waterfall, incremental, or
Spiral frameworks. Users are seen as gaining more of a sense of
ownership of a system, while developers are seen as gaining more
satisfaction from producing successful systems quickly.

4. Concentrates on essential system elements from user viewpoint.

5. Provides the ability to rapidly change system design as demanded
by users.

6. Produces a tighter fit between user requirements and
system specifications.

7. Generally produces dramatic savings in time, money, and man-hours.

Weaknesses:

1. More speed and lower cost may lead to lower overall system quality.

2. Danger of misalignment of developed system with the business due to
missing information.

3. Project may end up with more requirements that
needed (gold-plating).

4. Potential for feature creep where more and more features are added
to the system course of development.

5. The potential for inconsistent designs within and across systems.

6. Potential for violation of programming standards related to
inconsistent naming conventions and inconsistent documentation.

7. The difficulty with module reuse for future systems.

8. The potential for the designed system to lack scalability.

9. Potential for lack of attention to later system administration needs
built into the system.

10. The high cost of commitment on the part of key user personnel.

11. Formal reviews and audits are more difficult to implement that for a
complete system.

12. Tendency for difficult problems to be pushed to the future to
demonstrate early success to senior management.

13. Since some modules will be completed much earlier than others,
well-defined interfaces are required.

Situations where most appropriate:

1. Project is of small-to-medium scale and of short duration (no more
than 6 man-years of development effort).

2. Project scope is focused, such that the business objectives are well
defined and narrow.

3. Application is highly interactive, has a clearly defined user group,
and is not computationally complex.

4. Functionality of the system is clearly visible at the
user interface.

5. Users possess detailed knowledge of the application area.

6. Senior management commitment exists to ensure end-user involvement.

7. Requirements of the system are unknown or uncertain.

8. It is not possible to define requirements accurately ahead of time
because the situation is new or the system being employed is
highly innovative.

9. Team members are skilled both socially and in terms of business.

10. Team composition is stable; continuity of core development team can
be maintained.

11. Effective project control is definitely available.

12. Developers are skilled in the use of advanced tools.

13. Data for the project already exists (completely or in part), and the
project largely comprises analysis or reporting of the data.

14. Technical architecture is clearly defined.

15. Key technical components are in place and tested.

16. Technical requirements (e.g., response times, throughput, database
sizes, etc.) are reasonable and well within the capabilities of the
technology being used. Targeted performance should be less than 70%
of the published limit of the technology.

17. Development team is empowered to make design decisions on a
day-to-day basis without the need for consultation with their
superiors and decisions can be made by a small number of people who
are available and preferably co-located.

Situations where least appropriate:

1. Very large, infrastructure projects; particularly large, distributed
information systems such as corporate-wide databases.

2. Real-time or safety-critical systems.

3. Computationally complex systems, where complex and voluminous data
must be analyzed, designed, and created within the scope of
the project.

4. Project scope is broad and the business objectives are obscure.

5. Applications in which the functional requirements have to be fully
specified before any programs are written.

6. Many people must be involved in the decisions on the project, and
the decision makers are not available on a timely basis or they are
geographically dispersed.

7. The project team is large or there are multiple teams whose work
needs to be coordinated.

8. When user resource and/or commitment is lacking.

9. There is no project champion at the required level to make
things happen.

10. Many new technologies are to be introduced within the scope of the

the project, or the technical architecture is unclear and much of the
technology will be used for the first time within the project.

11. Technical requirements (e.g., response times, throughput, database
sizes, etc.) are tight for the equipment that is to be used.

Test Driven Development
Framework Type: Iterative

Basic Principles:

"Test-driven development" refers to a style of programming in which three activities are tightly interwoven: coding, testing (in the form of writing unit
tests) and design (in the form of refactoring).

It can be succinctly described by the following set of rules:

write a "single" unit test describing an aspect of the program
run the test, which should fail because the program lacks that feature
write "just enough" code, the simplest possible, to make the test pass
"refactor" the code until it conforms to the simplicity criteria
repeat, "accumulating" unit tests over time

Expected Benefits
Many teams report significant reductions in defect rates, at the cost of a moderate increase in initial development effort the same teams tend to
report that these overheads are more than offset by a reduction in effort in projects' final phases although empirical research has so far failed to
confirm this, veteran practitioners report that TDD leads to improved design qualities in the code, and more generally a higher degree of "internal"
or technical quality, for instance improving the metrics of cohesion and coupling

Common Pitfalls
Typical individual mistakes include:

forgetting to run tests frequently
writing too many tests at once
writing tests that are too large or coarse-grained
writing overly trivial tests, for instance omitting assertions
writing tests for trivial code, for instance accessors

Typical team pitfalls include:

partial adoption - only a few developers on the team use TDD
poor maintenance of the test suite - most commonly leading to a test suite with a prohibitively long running time
abandoned test suite (i.e. seldom or never run) - sometimes as a result of poor maintenance, sometimes as a result of team turnover

Signs of Use

"Code coverage" is a common approach to evidencing the use of TDD; while high coverage does not guarantee appropriate use of TDD,
coverage below 80% is likely to indicate deficiencies in a team's mastery of TDD
version control logs should show that test code is checked in each time product code is checked in, in roughly comparable amounts

Skill Levels
Beginner

able to write a unit test prior to writing the corresponding code
able to write code sufficient to make a failing test pass

Intermediate

practices "test driven bug fixing": when a defect is found, writes a test exposing the defect before correction

able to decompose a compound program feature into a sequence of several unit tests to be written
knows and can name a number of tactics to guide the writing of tests (for instance "when testing a recursive algorithm, first write a test for the
recursion terminating case")
able to factor out reusable elements from existing unit tests, yielding situation-specific testing tools

Advanced

able to formulate a "roadmap" of planned unit tests for a macroscopic features (and to revise it as necessary)
able to "test drive" a variety of design paradigms: object-oriented, functional, event-drive
able to "test drive" a variety of technical domains: computation, user interfaces, persistent data access...

Further Reading on Test Driven Development
Test Driven Development: By Example, by Kent Beck

Appendix Foot Notes:
1. See Game Business Development Appendix & References

2. See Appendix for Game Design & References.

3. See article at Gamasutra* A Primer for the Design Process.

4. http://en.wikipedia.org/wiki/Systems_development_life_cycle

5. See article at: P4Connect Project Management Software into the Unity engine. P4Connect embeds the firm's P4D versioning engine into the
Unity developer environment, allowing uses to access Perforce's features â€“ such as code and asset management, tracked change history
and automation â€“ directly within Unity.

Developers will not need a Unity Pro or Team Unity licence, making P4Connect available to all indie devs that use Unity.

1. See Project Management Appendix: RAD step 3.

https://amzn.to/2AtVxgV
https://www.gamasutra.com/view/feature/131558/a_primer_for_the_design_process_.php
https://en.wikipedia.org/wiki/Systems_development_life_cycle
https://www.develop-online.net/news/perforce-s-p4connect-introduces-unity-integration/0202509

	Project Management Analysis Appendix
	Game Project Management {#Game Project Management}
	Prototyping
	Incremental
	Spiral
	RAD (Rapid Application Development)
	Test Driven Development
	Expected Benefits
	Common Pitfalls
	Typical team pitfalls include:
	Signs of Use
	Skill Levels
	Further Reading on Test Driven Development

	Appendix Foot Notes:

